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be insensitive to more finely resolved variations in scale.
Ensuring uniqueness can be a formidable task because ofA new nesting technique has been developed for computing solu-

tions of the steady-state form of the wave action equation. The variability of the four-dimensional space associated with
technique is especially useful for investigating the effects of resolu- the problem. A second, potentially more fundamental re-
tion on the accuracy and stability of the computation. This has quirement is to identify a suitable choice of appropriate
importance in the problem of determining ocean wave spectra un-

boundary conditions which can be related to the knownder the influence of ambient wind fields and current distributions.
dynamics of the equation, relative to the surface featureThe technique enables extremely high resolution computations to

be performed with minimal computer storage requirements. It is under consideration.
especially useful for applications in modelling radar imagery of In the present paper, we demonstrate the utility of a
the ocean surface. Investigations of the convergence, stability, and nesting technique for constructing solutions that satisfy
accuracy of the procedure are made possible by introducing a fixed

these last two criteria. In particular, in the technique, wave-grid point location which is common to all the nested grids. In order
action spectral densities associated with the solution of theto display the method, we apply it to a particular model of an

oceanographic current rip feature that was recently observed during equation from one spatial grid are used to provide updated
the first High Resolution Remote Sensing Experiment. Limitations boundary conditions for calculations that are performed
of the method are also discussed. Q 1997 Academic Press on a smaller, embedded grid. This process is repeated until

the desired resolution for a region of interest is obtained.
We have tested the technique and demonstrated its utilityI. INTRODUCTION
using a particular model of an oceanographic feature that
was observed during a recent experiment. An unexpectedThe wave action equation characterizes the effects of

winds and currents upon the ocean wave spectrum. It is an result is that, provided the numerical grid that is selected
possesses adequate spectral resolution, it is possible toexpression of conservation of wave action spectral density

with the inclusion of source terms to simulate the real world obtain a well-converged solution of the wave action equa-
tion, on a scale that is significantly more finely resolvedeffects of wind wave growth, dissipation, and nonlinear

wave–wave interactions. Although the solution of the wave spatially, with a minimal number of applications of the
nesting procedure.action equation is traditionally an initial value problem,

there exists a particular steady-state limit of the equation Previously, a nesting approach has been developed for
determining wave spectra based on embedded spatial gridswhere the solution can be transformed into a boundary

value problem. When applied to problems encompassing [1]. However, this earlier method, which is applicable for
the time-dependent WAM model, is more useful for largerlarge spatial extent, this limit can be conveniently used for

determining the spectrum of waves at the surface of the scale problems involving mesoscale spatial extent, where
the WAM model has been applied. The approach is alsoocean, when a particular form of source function is used.

In order to simulate the radar imagery of oceanographic inherently more computationally intensive because it is
based on solving the time-dependent, nonsteady-statefeatures, it is necessary to determine the associated varia-

tion in the corresponding ocean wave spectra. To accom- problem. The method presented in this paper is inherently
faster because it is based on the boundary value problemplish this, a number of questions must be addressed, related

to spatial and spectral resolution, convergence, and the that can be applied to uses involving the simpler, steady-
state approximation. Also, the present method can be moreuniqueness of the solution. Even in the steady-state limit,

the differential equation involves four explicit variables. readily applied to the problems associated with consider-
ably smaller spatial extent.For the solution to be meaningful, it must approach a

unique solution. The resolution (both spatial and spectral) The paper is organized as follows. In Part II, we describe
the wave action equation and the full-wave method for itsmust be sufficiently fine to ensure that the solution will
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solution. Part III describes the new nesting technique. Part and ky as five independent variables and the action spectral
density as the only dependent variable.IV details the experimental results and our modeling effort,

and the results of our calculations are reported in part V. If one is interested in characterizing the evolution of
the action spectral density for a particular surface currentPart VI is a summary.
feature which is propagating through the ocean with a fixed
velocity, the steady-state approximation to the wave-actionII. THE WAVE ACTION EQUATION
equation can be employed. The steady-state approxima-
tion removes the explicit time-dependence of A by makingIn order to model radar imagery of the ocean, it is neces-
a Galilean transformation into a reference frame which issary to determine the amplitudes of water waves and their
fixed upon the feature. The equation to be solved is thenspatial variation. For this purpose, the conservation of

wave action is utilized, given by [2]
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where kEl is the energy per unit volume of a wave packet where S is a general source term which is necessary in
centered at x at time t traveling through the water and U order to correctly model ocean waves, which gain energy
is the surface current. The group velocity vector is from the wind and lose energy through a number of dissipa-

tion mechanisms, and u9 (v9) represent the surface current
components, u (v) expressed relative to the feature-fixed
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ĵ, (2) coordinate system. The computational domain has been
reduced to four dimensions with the elimination of time,
t, as an independent variable. This is a steady version ofwhere g is the intrinsic frequency and kx(y) is the compo-
the hyperbolic equation, which means that characteristicsnent of the wave number along the orthogonal direction
exist along which a numerical solution can be propagatedspecified by î( ĵ). The intrinsic frequency is given by the
through the region. In addition, if the source term S isdispersion relation
quadratic in A (as in Eq. (7)), when Eq. (5) is expressed
in finite difference form, the resulting expression can be
reduced to the solution of a quadratic equation. Sinceg2 5 Sgk 1

Tk3

r
D tanh(kD), (3)

the equation is hyperbolic, this quadratic equation can be
solved uniquely to provide A, provided it is possible to
identify which of the two roots of the equation is the appro-where g is the acceleration of gravity, r is the density of
priate one. Because the action density is positive definite,the water, T is the surface tension, and D 5 D(x, y) is the
this choice can be uniquely specified by identifying situa-depth of the water.
tions in which the coefficients of A in the finite differenceFor a continuous spectrum, it is convenient to recast the
expression share a common sign.problem of solving Eq. (1) for the wave action of

The action spectral density can alternatively be writtenan individual wave packet in terms of the equivalent
as A(x, y, k, f), with the wave number magnitude k andproblem of solving for the wave action spectral density [3],
angle f defined asA(x, k, t), defined by

k 5 (k2
x 1 k2

y)1/2, f 5 tan21(ky /kx). (6)kEl
g

5 A(x, k, t)D2k, (4)

In the present calculations, the Plant–Hughes form is
employed for the source function, defined by [6]where D2k measures the two-dimensional variation

(spread) in wave vectors associated with the individual
packet. In practise, two procedures have been applied to 2b

A
A0

(A 2 A0 ), (7)
determine kEl/g, both associated with evaluating A. One
of these, referred to as ray tracing, is discussed elsewhere
[4]. In this paper, we use the full-wave method, developed where A0 is the equilibrium action density given by Bjer-

kaas and Riedel [7]. Here b is the wave growth-relaxationby Lyzenga and Bennett [5]. In this case, A is derived from
a first-order partial differential equation, with x, y, t, kx , rate defined by Plant [8],
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determined at points next to the boundary, these values,
b 5 0.04 Su*

c D2

gucos(f 2 fw)u, (8) in turn, are used to initialize computations for subsequent,
interior points. Based on this procedure, values of A at all
interior points are determined. As noted above, the wavewhere u* is the friction velocity, c 5 g/k is the wave phase
vector variables kx and ky from Eq. (5) are expressed invelocity, and fw is the wind direction.
polar form and the radial k variable is constructed usingIn practice, Eqs. (5)–(8) are solved by writing Eq. (5)
a logarithmically varying scale.in finite difference form, based on an initial set of values

The full-wave formulation of the wave action equationdefined by the values of A as a function of wave vector,
has several drawbacks for this application. It is rather com-at each point along a particular boundary. In particular,
putationally intensive, even in the steady state approxima-using the values of the current, wind, and dispersion rela-
tion, which we adopt here. Since the wave action spectraltionship (Eq. (3)) at the boundary, nearest neighbor point
density is calculated at every point in a four-dimensionalvalues for A are derived. The procedure for accomplishing
space, a high resolution calculation requires a great dealthis involves solving a quadratic equation of the form
of computer memory. A second difficulty of the steady
full-wave method is that the action spectral density at theaA2(i, j, m, p) 1 bA(i, j, m, p) 1 c 5 0, (9)
physical boundaries needs to be specified consistent with
the dynamics of the equation. In practice, this has usuallywhere
required that the currents be constrained asymptotically
to approach zero at the boundaries so that A can be pre-

a 5 b/A0 , (10) scribed there by its equilibrium value, A0 . This requirement
has restricted the range of problems for which the methodb 5
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may become computationally prohibitive, the nesting pro-
(11) cedure may be the only viable option for many applica-

tions.
and

III. NESTING CONCEPT
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To circumvent some of these difficulties, a nesting proce-
dure was developed in the present work. An important
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that are applied at practical infinity. By practical infinity,
we are referring to the boundary of the largest mesh usedA(i, j, m 6 1, p) 1

1
Df in the problem. The self-consistency requirement is that the

solution obtained from the boundary conditions applied atS2cos2 f
­u
­y

2 cos f sin f S­v
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­v
­xD practical infinity can be used to provide boundary condi-

A(i, j, m, p 6 1), (12) tions for successively smaller meshes subject to the con-
straint that at some mesh size the solution at interior spatial
locations becomes insensitive to further reduction in meshwhere the sign of the increments in i, j, m, and p are taken

such that the upwind differencing with respect to x, y, size. In particular, once the procedure is initialized, based
on some prescribed boundary condition (which need notk, and f is preserved. (I.e., the sign in each term to be

implemented is the opposite of that of the associated coef- be the one associated with the equilibrium value of A),
the nesting procedure provides a method for obtainingficient of A.) Note that the terms involving derivatives of

g have been omitted, as we are considering the deep water appropriately propagated boundary conditions for new nu-
merical grids possessing finer resolution, which are by con-case where the depth is much larger than any of the wave-

lengths considered. A is determined using the well-known struction consistent with the equation. The manner in
which propagation of boundary conditions occurs is a func-solution of the quadratic equation. After values of A are
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shown in Fig. 1. Also, xn is the position of the lower left
corner of the nth stage grid and xi(f ) is the position of
the lower left corner of the initial (final) stage grid. The
remaining parameter to be selected is the number of grids,
or stages, M, in the nested calculation.

The nested computation is then carried out as follows.
The wave action density is calculated for the initial region.
A grid for the next stage is then defined, by a procedure
described below, and the wave action density which has
been calculated on the initial grid is used to define the
boundary condition for the new grid, with the value of
the action density being interpolated to the new grid, as
necessary. The full-wave method is then applied on this
new grid as an initial grid, and the procedure is repeated
as often as needed, until the final grid is calculated. As in
Lyzenga and Bennett, equilibrium spectral densities are
applied at the minimum and maximum wavelength bound-
aries of the computation. This necessitates that the mini-
mum to maximum wavelength range extend beyond the

FIG. 1. Drawing illustrating the nesting procedure. Li(f ) is the x di-
range of interest for the particular application as discussedmension of the initial (final) grid. The point (x0 , y0) is the fixed point
in Cooper et al. [9].defined in the text. The points (xi , yi), (xn , yn) and (xf , yf ) denote the

corners of the initial grid, an intermediate grid and the final grid, respec- Once the initial and final grids have been chosen, we
tively. can calculate the intermediate grid locations by

xn 5 xi 1
xf 2 xi

Li 2 Lf
(1 2 sn21)Li , (14)tion of the growth relaxation time (defined by b21). When

b 5 0, wave action is conserved, so that, for this case, the
effects of the boundary condition propagate throughout where s is the scale factor, given by
the entire domain. For finite values of b, a competition
exists between the wave transit time and the relaxation
time. Thus the boundary effects of longer waves have a s 5 SLf

Li
D1/(M21)

5 (r)21/(M21). (15)
larger range of influence. As a consequence, by changing
the initial grid size and the initial boundary conditions, it

This divides the total resolution enhancement, r, betweenis possible to monitor sensitivities of the spectral depen-
the M stages. The y positions are calculated by an analo-dence of the solution with respect to changes in its bound-
gous equation. The appropriate lengths of the total x di-ary values and spatial resolution.
mension of each grid can be calculated simply by scalingThe nested computations are performed in the following
the initial x lengthmanner. The initial region for the calculation is determined

by the size of the feature being investigated. The first step
Ln 5 sn21Li , (16)is to choose a point of interest, (x0 , y0), as shown in Fig.

1; this point is referred to as the fixed point. Diagonals are
then constructed from (x0 , y0) to the corners of the original and the same geometric constraints hold for the y dimen-
grid. A region of interest, shown by the smallest rectangle sion. We note here that the scaling factor must be the same
in Fig. 1, is then defined; it is dictated by the desired for x as for y. In this procedure, by construction, the relative
physical final resolution, combined with the chosen numer- location of the fixed point in each of the nested grids
ical size of the spatial grid that results from the constant remains the same. Therefore, if the fixed point is chosen
number of grid points, nx and ny , in the x and y directions. on a mesh point of the initial grid, it remains at the same
The corners of the region of interest are defined by the mesh point of each subsequent, nested grid.
diagonals. The spatial resolution enhancement, r, is given
by the ratio IV. MODELLING OF THE CURRENT FIELD

The motivation for the paper is to demonstrate the utilityr 5 Li /Lf , (13)
of a nesting method and to provide preliminary observa-
tions based on the method with respect to the variabilitywhere Li(f ) is the length of the initial (final) region, as
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and sensitivity of calculated wave spectra as a function by 1500 m shown in Fig. 3a. Two areas of interest (final
computational domains), both of dimension 200 m by 300of spatial resolution. This work, in turn, has important

significance for predictions of large radar returns, such as m, constructed through nesting, are shown in Fig. 3a as
regions 1 and 2. Region 2 possesses a large ratio of shearthose observed by Askari [10] near the Gulf Stream during

the first High Resolution Remote Sensing Experiment [11]. to convergence while region 1 has a minimal ratio. We
chose a mesh in which the number of points nx and ny inIn particular, the radar image is shown in Fig. 2a. Figure

2b shows the result of applying the composite radar back- the x and y directions, respectively, was given by nx 5
ny 5 61, so that the beginning resolution was 25 3 16.6 mscatter model to a model (described below) of the underly-

ing currents without the application of nesting to refine and the final resolution was 5 3 3.3 m, representing a
fivefold resolution enhancement (r 5 5).the spatial resolution. An important motivation for under-

standing the role of resolution on radar imagery is provided In these calculations, the wave vector k is expressed in
polar form, as in Eq. (6), using nk radial values (k(l), l 5by the need to understand the marked increase in radar

return in the regions of strong curvature (at the points of 1, 2,..., nk ) and nP azimuthal directions (f(m), m 5 1, 2,...,
np). It is advantageous to use an exponential scale for thelocal maxima and minima) that are present in the sinusoi-

dally displaced feature found in both the measured and wave vector magnitude since many decades of k variation
are typically included. This is accomplished by defining ksimulated images. The surface current distribution that is

used to model this rip-like feature is the two-dimensional and f by
functional form

k(l) 5 kmin Skmax

kmin
D(l21)/(nk21)

(19)
V(x, y) 5 2

dV
2

tanh Sx 2 x0 sin(2fy/l)
dx D . (18)

andHere, dV 5 60 cm/s is the magnitude of the convergence
velocity, dx 5 30 m is the width of the rip, x0 5 300 m is
the amplitude of the sinusoidal displacement of the conver- f(m) 5

2f(m 2 1)
np

. (20)
gence, and l 5 1500 m is the wave length of the displace-
ment. The magnitudes of dV and dx are representative Each nesting configuration as defined above provides en-
values, inferred from ground truth measurements by hancements in spatial resolution for fixed spectral resolu-
Marmorino and Trump [12], and the values of x0 and l tion, defined by nk , np , kmax , and kmin in Eqs. (19) and (20).
were inferred from a section of the radar image (Fig. 2a). Two levels of spectral resolution, (nk , np ), were utilized
(In particular, the sinusoidal form wavelength was inferred in the present work: (32, 30) and (32, 64). In all the compu-
from the meandering red line located between 6.5 and 8 tations conducted, kmax 5 6283 m21 and kmin 5 0.126 m21,
km in the azimuthal direction and approximately 1.4 km corresponding to 0.001 m and 50 m for the minimum and
in the range direction.) A sketch of the overall geometry maximum wavelengths. The minimum wavelength is se-
is shown in Fig. 3a. Figure 3b shows a one-dimensional cut lected to be significantly smaller than the wavelength of
of the current profile at y 5 0, illustrating the form of the interest. As discussed in Cooper et al. [9], this is because,
convergence and the magnitude of the parameters used in for the functional form that is assumed in Eq. (5), b Y
the modelling. k1/2 and, hence, A R A0 as k R y. The 50-m maximum

The choice of currents represented by Eq. (18) is a two- wavelength is chosen because it is well beyond the peak
dimensional extension of a similar one-dimensional form in the equilibrium spectrum for the 3 m/s winds used in
used by Jansen et al. [13]. This form is derived by sinusoi- the calculations [5, 9]. Also, the deep water approximation
dally displacing the one-dimensional convergence to mimic to the dispersion relation was used throughout, so that the
the shape of a section of the experimental radar image hyperbolic tangent term in Eq. (3) was taken as unity.
(Fig. 2a), providing a simple two-dimensional variability Initial nesting computations were performed using nk 5
in the single component current field. This 2D-field pos- 32 and np 5 30, and M 5 6 and M 5 11 for the same
sesses a current shear, in addition to the convergence, with resolution enhancement, r 5 5. These two overlapping
the ratio of shear to convergence varying with y. Because values of M were used to enable a direct comparison of the
an analytic representation is used, interpolation is not nec- action spectral density at corresponding equal intermediate
essary, even when currents of arbitrarily fine resolution meshes in the nests, as well as at the common final mesh.
are constructed. Convergence at a fixed value of M was monitored using

the quantity CM defined byV. RESULTS

The initial computational domain included for all the CM(i) 5
FM(i 1 1) 2 FM(i)
FM(i 1 1) 1 FM(i)

, i 5 1, M 2 1, (21)
nesting computations is a rectangle of dimension 1000 m
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FIG. 3. (a) A drawing of the model of the rip used in these calculations. The two locations of the regions where the nesting procedure was
terminated are shown by the small rectangles labeled 1 and 2. The fixed point for each area is shown by the small dot. The arrows show the
convergence of the current to the rip, which has been displaced sinusoidally to model the variations seen in Fig. 2. (b) A one-dimensional view of
the current convergence, showing the parameters which were used.

where FM(i) is the wave height spectral density at the fixed convergence behavior was found for M 5 6 with somewhat
larger values for CM . Convergence of this type was alsopoint for stage i of M. Here, the wave height spectrum is

defined by obtained for (nk , np ) 5 (32, 30).
To investigate the uniqueness of the converged result,

we define the fractional spectral density difference D as
F 5

k
g

A. (22)

D 5
F6(i) 2 F11( j)
F6(i) 1 F11( j)

, (23)
Convergence of the calculation was determined from con-
tour plots of CM(i). Two of these plots are shown in Fig.
4, for the case where (nk , np ) 5 (32, 64) and M 5 11. It where F6(i) (as in Eq. (22)) is the wave height spectral

density at the fixed point for the ith stage of M 5 6 andis seen that the change in spectral density from one stage
of the nest to the next is diminishing as the nesting process F11( j) is the wave height spectral density at the equivalent

stage j of M 5 11. The first stage is based on the case inevolves. At the final stage (shown in Fig. 4b), except for
a small region in the neighborhood of the origin, maximum which the equilibrium values A0 are used for the boundary

conditions. The computational domain and grid that occurvalues of CM relax to somewhat less than 0.08. Similar

FIG. 2. (a) An X-band, horizontally polarized, real aperture radar image of the rip, taken during the first High Resolution Remote Sensing
experiment, showing the variation in radar cross section in decibels. The intensities vary from about 15 db below the background level (dark blue)
to about 10 db above (red). The sinusoidally displaced red line running horizontally through the image corresponds well with the location of a
current convergence seen in ground truth measurements. (b) Contour plot of the model radar cross section per unit area, expressed in decibels,
calculated using the composite scattering model. Because the absolute magnitude of the cross section is used, all values are negative. The underlying
hydrodynamics are calculated by the full-wave method, with nk 5 32 and np 5 64.
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FIG. 4. Contour plots of the convergence parameter CM(i) 5 (FM(i 1 1) 2 FM(i))/(FM(i 1 1) 1 FM(i)) for i 5 1 (a) and 10 (b). Contours are
incremented in steps of 0.02. The convergence of the calculation is seen in the increase in area of the zero contour and the decrease in area of the
CM 5 0.1 contour, which is the largest value shown. The ordinate and abscissa are the y and x components of ln(k/kmin). The origin therefore
represents k 5 kmin or l 5 50 m while the outer extremes of the figure represent ln(k/kmin) 5 10.819 or l 5 0.001 m.

at stage 3 for M 5 11 are exactly the same as the grid and As discussed above, for (nk , np) 5 (32, 30), the nesting
procedure seems to converge to a particular solution asdomain that are present at stage 2 for M 5 6. Similarly,

equivalent grids are obtained for the jth stage for M 5 11 mesh size is reduced. However, the resulting solution is not
correct. This failure can be seen by comparing equivalentand the ith stage for M 5 6, when j 5 2i 2 1. The maximum

and minimum values for D (measured at the fixed point) calculations (such as M 5 6 and M 5 11) using Eq. (23).
In particular, in Table I, in the column labeled np 5 30,for each set of equivalent stages are shown in Table I.

TABLE I

The Maximum and Minimum of the Fractional Difference D, Defined by Eq. (23), of the Wave Height Spectral Density for
Equivalent Grids for Calculations with M 5 6 and M 5 11 for three sets of parameters

np 5 64 np 5 64 np 5 30
nk 5 32 nk 5 32 nk 5 32

Region 2 Region 1 Region 1
Stage of Stage of
M 5 6 M 5 11 Max Min Max Min Max Min

2 3 0.0019 20.0007 0.0005 20.0014 1.0000 21.0000
3 5 0.0036 20.0009 0.0007 20.0105 1.0000 21.0000
4 7 0.0091 20.0028 0.0015 20.0259 1.0000 21.0000
5 9 0.0058 20.0051 0.0031 20.0236 1.0000 21.0000
6 11 0.0034 20.0139 0.0053 20.0234 1.0000 21.0000

Note. The stages that are used in computing D are listed in the first two columns. Regions 1 and 2 refer to the rectangles labeled 1 and 2,
respectively, of Fig. 3a. The small differences for both of the cases with np 5 64 show that convergence to a unique solution with respect to the
number of nesting stages has been reached by M 5 6 and M 5 11, in contrast to the np 5 30 case, where convergence to a unique solution has
not been achieved.
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of an RCS calculation, based on the np 5 30 spectral density
results. The skewed shape of the interior contours contrasts
with the more symmetric shape of the corresponding con-
tours in Fig. 2b. The origin of this asymmetry was identified
from a comparison of the spectral densities for the two
cases and was found to be primarily due to waves with a
wavelength of about four meters. These waves are more
accurately represented for the case (shown in Fig. 2b) in
which np 5 64.

However, this asymmetry was only obtained for the cases
involving (nk , np) 5 (32, 30), when a refined composite
backscatter RCS was used. The refinement involves com-
puting the composite backscatter RCS from a complete
tilt modulation calculation, in which the procedure for
averaging the slopes (Sx , Sy) of individual Bragg scatterers
is unconstrained (so that Sx and Sy are allowed to become
large). When the more commonly applied small slope ap-
proximation [14] is used, the asymmetry is not present. The
asymmetry was obtained for all the nested computations
at (32, 30) when the complete tilt modulation composite
backscatter RCS was employed.

The radar calculation at X-band is not significantly af-FIG. 5. Contour plot of the model radar cross section in decibels,
calculated using the composite scattering model. The underlying hydrody- fected by the nesting procedure. However, as indicated
namics are calculated by the full-wave method, with nk 5 32 and np 5 30. above, it is sensitive to the selected spectral resolution

parameter (np ). These sensitivities result from the tilt mod-
ulation calculation. Because large slopes are not includedthe minimum and maximum values of D are always plus

or minus one (to the numerical accuracy displayed), which in the small slope approximation, the associated tilt modu-
lation calculations are not sufficiently accurate at X-band.shows that at the fixed point, for at least one set of spectral

(k, f) values, the two calculations differ by many orders When the complete tilt modulation calculation (using all
values of the slope) is used, the resulting radar simulationof magnitude. As a consequence, the solution for (nk ,

np ) 5 (32, 30) is, at each equivalent stage, very different, is more sensitive to angular resolution. Thus, a converged
radar result is obtained only when the resolution is suffi-and the procedure, when applied with np 5 30, has failed

to provide a solution that asymptotically (as a function of ciently fine.
It is informative to identify the spectral locations wherespatial mesh size) approaches the correct (‘‘unique’’) re-

sult. A condition for obtaining a unique solution is that the spectral differences, D, are greatest. To determine this,
we examined the wave height spectra as a function of wavethe two calculations provide approximately the same result

for all spectral values, which gives uDu ! 1.) We found number for a given nesting computation. Figure 6 shows
the percentage difference in the wave height spectra be-similar results in comparing calculations with M 5 21 and

M 5 11 for np 5 30. tween the first and last stages for M 5 6, i.e., between the
final nested and the unnested computations. We see thatHowever, as can be seen by the marked reduction in

the values for uDu in the table, when np is increased from the change in wave height spectra in the range k 5 2–
10 m21 is significant, indicating the effect of the nesting30 to 64 with nk kept fixed at 32, (nk , np) 5 (32, 64),

values of uDu are significantly reduced at the fixed point. procedure is most dramatic for this range of wave vectors.
Figure 7 shows the percentage difference between the waveIn particular, the two columns in Table I labeled np 5 64

show that the maximum values of uDu (which increase, but height spectra for the two spectral resolutions (nk , np ) 5
(32, 30) and (32, 64) for the last stage of M 5 6. The locationnot significantly, as the procedure progresses) for the areas

labeled 1 and 2 of Fig. 3a are all below 0.026. The small of the large difference at intermediate wave numbers is
a result of the inadequacy of the calculations with np 5sizes of these values indicate stability with respect to the

iteration procedure and show that the calculation with 30. Identical plots to those shown in Figs. 6 and 7 occur
in the comparable fractional differences in the slope spec-M 5 6 has converged to a solution closely approaching

the solution for M 5 11, strongly suggesting that the nesting tra, the curvature spectra and other spectrally resolved
moments of F, since the percentage change is the same inresult is unique.

Calculations of the radar backscatter cross section also F as for its spectrally resolved moments at a particular
wave vector.show a sensitivity to the np value. Figure 5 shows the result
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Having demonstrated unique convergence of the calcu-
lation for M 5 6 and (nk , np) 5 (32, 64), we attempted to
determine the minimum number of stages required for
convergence. Somewhat surprisingly, it was found that con-
vergence is satisfactory for M 5 2, although the values of
D and CM are somewhat higher when comparing M 5 2
with M 5 6, than for the comparison of M 5 6 with
M 5 11. However, it is worthwhile noting that this rapid
convergence with respect to the application of the nesting
procedure is only valid when np is sufficiently large. (As
shown above, when np 5 30, A converges to an incorrect
limit when the nesting procedure is applied.) Convergence
for M 5 2 at (nk , np) 5 (32, 64) seems to indicate that the
computation of the wave action spectral density is more
sensitive to changes in the resolution of the spectral param-
eters than to variations in the scale associated with the
spatial resolution. Investigations at intermediate spectral
resolutions, may be useful to exploit this behavior. A pro-
cedure involving simultaneous nesting in the spectral do-
main may also be beneficial.

VI. SUMMARY

FIG. 6. Plot of the difference of the wave height spectra D 5
A technique has been developed which extends the ef-(F6(1) 2 F6(6))/(F6(1) 1 F6(6)) for f 5 0, between the first and last

stages of a six-stage calculation, as a function of wave number for (nk , fectiveness of time independent, full wave techniques for
np) 5 (32, 64). solving the wave action equation, such as the one used in

the full-wave method of Lyzenga and Bennett. The value
of the procedure comes from its usefulness for identifying
a solution that asymptotically approaches the unique solu-
tion which would occur in the limit of small spatial and
spectral resolution. A requirement for identifying such a
solution is that the solution be insensitive with respect to
further changes in spatial and spectral resolution. Because
the procedure provides a method for altering the spatial
resolution and updating the boundary condition values that
are used to initiate the calculation, the method provides a
technique for rapidly changing the spatial resolution and
determining whether a converged result can be obtained
with respect to this form of variation. Because this form
of variation can be implemented rapidly as a result of the
procedure, it is also possible to investigate the effects of
changing the spectral resolution. We have demonstrated
this in tests.

The technique utilizes wave action spectral densities cal-
culated on an exterior grid to define appropriate boundary
conditions for a calculation on a smaller, interior grid with
higher spatial resolution. Since this procedure could, in
principle, be used recursively, it is referred to as nesting.
In tests of this techique, it is found that, with sufficiently
fine spectral resolution, one nesting step was sufficient to
guarantee unique convergence. In the process, we have
identified a number of sensitivities associated with the

FIG. 7. Plot of the difference of the wave height spectra D 5
choice of wave vector resolution that have bearing on the(F(np 5 64) 2 F(np 5 30))/(F(np 5 64) 1 F(np 5 30)) from a calculation
problem of determining correct spectra on successivelywith np 5 30 compared to one with np 5 64 as a function of wave number.

The spectra in both cases are from the last stage of a six-stage calculation. more finely resolved spatial grids.
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From these results, it is concluded that the choice of detailed comparison of our results with relevant experi-
ments.angular resolution in spectral space, which was initially

deficient, can more significantly alter the result than the
choice of spatial resolution scale. It is suggested that an ACKNOWLEDGMENTS
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